Refine your search:     
Report No.
 - 
Search Results: Records 1-14 displayed on this page of 14
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Research and development of transparent materials for radiation shield using nanoparticles (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*

JAEA-Review 2020-036, 176 Pages, 2021/01

JAEA-Review-2020-036.pdf:9.55MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2019. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield Using Nanoparticles" conducted in FY2019. The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making boride or heavy metal compounds into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.

JAEA Reports

Research and development of transparent materials for radiation shield using nanoparticles (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Kyushu University*

JAEA-Review 2019-039, 104 Pages, 2020/03

JAEA-Review-2019-039.pdf:5.57MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Research and Development of Transparent Materials for Radiation Shield using Nanoparticles". The present study aims to reduce radiation exposure of workers in debris retrieval/analysis and reduce deterioration of optical and electronic systems in remote cameras. For these purposes, we develop transparent radiation shield by making the shield materials into nanoparticles, and dispersing/solidifying them in epoxy resin. By making B$$_{4}$$C and W into nanoparticles, we will also develop a radiation shield that shields both neutrons and gamma-rays, and also suppresses secondary gamma-rays produced from neutrons.

Journal Articles

Comparison of thermal neutron distributions within shield materials obtained by experiments, SN and Monte Carlo code calculations

Asano, Yoshihiro; Sugita, Takeshi*; Suzaki,Takenori; Hirose, Hideyuki

Radiation Protection Dosimetry, 116(1-4), p.284 - 289, 2005/12

 Times Cited Count:0 Percentile:0.01(Environmental Sciences)

no abstracts in English

JAEA Reports

Measurements of power profile in TRACY supercritical experiment by detecting epithermal neutrons

Nakajima, Ken; Yanagisawa, Hiroshi; Miyoshi, Yoshinori

JAERI-Tech 2003-028, 31 Pages, 2003/03

JAERI-Tech-2003-028.pdf:1.38MB

We have tried to measure the power profile in the TRACY supercritical experiment with high accuracy by detecting epithermal neutrons. In order to measure the epithermal neutrons, a cadmium covered $$^{235}$$U fission chamber was used, and polyethylene, a neutron moderator, was set inside the cadmium to enhance the neutron detection efficiency. In addition, a lead shield was used to reduce the noise current due to gamma-rays. The measured results were compared with the ones using a thermal neutron detector, and it was found that the time delay effect in the thermal neutron detection, which was caused by the flight time of neutrons to reach the detector, distorted the power profile and reduced its peak value. The reduction ratio of peak power was about 4% for the relatively slow power change with the inserted reactivity of 1.5$, but it became over than 40% for the rapid power change with the reactivity of about 3$.

JAEA Reports

Study on residual radioactive inventory estimation in reactor decommissioning program (Contract research)

Sukegawa, Takenori; Hatakeyama, Mutsuo; Yanagihara, Satoshi

JAERI-Tech 2001-058, 81 Pages, 2001/09

JAERI-Tech-2001-058.pdf:5.98MB

In general, neutron transport and activation calculation codes are used for residual radioactive inventory estimation; however, it is essential to verify calculations by measurement results because of geometrical complexity of the reactor and so on. The comparison between measured and calculated radioactivity in the JPDR core components showed a relatively good agreement (factor of 2), and it was cleared that water content and weight ratio of steel bars to concrete materials significantly influenced the neutron flux distribution in the biological shield (factor of 2-10 error). The measured radioactivity inside of the reactor pressure vessel wall and at the inner part of the biological shield was compared in detail with the calculations to verify the methodology applied to calculations of radioisotope production. Then it was found that the radioactive inventory could be estimated accurately with combination of calculations and measurement of radioactivity in samples and dose rate distribution for planning of dismantling activities.

Journal Articles

Stabilization of cyclotron magnetic field strength by means of magnet temperature control

Okumura, Susumu; Kurashima, Satoshi; Ishimoto, Takayuki*; Yokota, Wataru; Arakawa, Kazuo; Fukuda, Mitsuhiro; Nakamura, Yoshiteru; Ishibori, Ikuo; Nara, Takayuki; Agematsu, Takashi; et al.

Proceedings of 13th Symposium on Accelerator Science and Technology, p.283 - 285, 2001/00

no abstracts in English

JAEA Reports

ITER cryostat thermal shield detailed design

*; Nakahira, Masataka; Hamada, Kazuya; Takahashi, Hiroyuki*; Tada, Eisuke; Kato, Takashi; *

JAERI-Tech 99-027, 113 Pages, 1999/03

JAERI-Tech-99-027.pdf:7.4MB

no abstracts in English

JAEA Reports

Journal Articles

Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; *; Suzuki, Katsuo*; *

Nihon Genshiryoku Gakkai-Shi, 40(6), p.486 - 494, 1998/00

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

JAEA Reports

Design of ITER shielding blanket

Furuya, Kazuyuki; Sato, Satoshi; Hatano, Toshihisa; *; Kitamura, Kazunori*; Miura, H.*; *; Kuroda, Toshimasa*; Takatsu, Hideyuki

JAERI-Tech 97-022, 113 Pages, 1997/05

JAERI-Tech-97-022.pdf:3.42MB

no abstracts in English

JAEA Reports

Transient thermal and stress analyses of the ITER shielding blanket/first wall under off-normal conditions

Furuya, Kazuyuki; Hashimoto, T.*; Sato, Satoshi; Kuroda, Toshimasa*; *; Kurasawa, Toshimasa; *; Takatsu, Hideyuki

JAERI-Tech 95-045, 53 Pages, 1995/09

JAERI-Tech-95-045.pdf:3.13MB

no abstracts in English

JAEA Reports

Radiation resistance of radiation shield rubber

*; Seguchi, Tadao; Nishii, Masanobu; *; Watanabe, Tadashi*

JAERI-M 90-011, 59 Pages, 1990/02

JAERI-M-90-011.pdf:1.88MB

no abstracts in English

Journal Articles

Self-shielding and burn-out effects in the irradiation of strongly-neutron-absorbing material

;

Journal of Radioanalytical Chemistry, 45, p.155 - 167, 1978/00

no abstracts in English

14 (Records 1-14 displayed on this page)
  • 1